(-)-DIHYDROSESAMIN, A LIGNAN FROM DAPHNE TANGUTICA

ZHUANG LIN-GEN, OTTO SELIGMANN*, HERMANN LOTTER* and HILDEBERT WAGNER*

Hunan Institute of Pharmaceutical Research, Shaoyang, Hunan, People's Republic of China, *Institute of Pharmaceutical Biology, Munich, West Germany

(Received 17 March 1982)

Key Word Index—Daphne tangutica, Thymelaeaceae, lignan, (-)-dihydrosesamin, (7R, 8S, 8'S)-9-hydroxy-7,9'-epoxy-piperolignan, X-ray analysis

Abstract—A new naturally occurring lignan has been isolated from the roots of Daphne tangutica and elucidated as (-)-dihydrosesamin by NMR, mass spectroscopy and X-ray analysis

INTRODUCTION

The roots and stems of *Daphne tangutica* Maxim (*D retusa* Hemsl) are known as 'Ai Tuotuo' in Chinese herb medicine and are used as an abortifacient and a remedy for rheumatism and toothache Chemical investigations on this drug have so far not been reported We describe herein the isolation and structure elucidation of (-)-dihydrosesamin (1) from the drug

RESULTS AND DISCUSSION

A dichloromethane extract of the roots of D tangutica, fractionated over a Si gel column, afforded a compound, which after purification by prep TLC, melted at 98-99° and gave an optical rotation of $[\alpha]_D^{25} = -15.9^\circ$ (pyridine, c 0.67) The molecular formula C20H20O6 of 1 was based on high resolution mass spectroscopy (M⁺356 128) The UV spectrum in methanol showed maxima at 235 nm ($\epsilon = 9187$) and 286 nm ($\epsilon = 9378$), whilst in the IR spectrum a hydroxyl group at 3380 cm⁻¹ was detectable The ¹H NMR spectrum (60 MHz) showed two methylendioxy groups at δ 5 90, six aromatic protons (δ 6.67–6 82) indicating two trisubstituted benzene rings, three nonequivalent methylene groups with signals at δ 2.72, between δ 3 53 and 3 86 and 3 98, and signals at δ 4 78 and between δ 2 18 and 2 53 integrating for three methine protons A hydroxyl group at δ 1 77 was exchangable with D₂O The ¹H NMR spectrum and the chromatographic behaviour of 1 resembled that of authentic (+)-dihydrosesamin, which was synthesized by Takahashi et al [1] from (+)-sesamin by partial hydrogenolysis The mass spectrum of 1 showed characteristic fragments at m/z 135 and 149, arising from the cleavage of the tetrahydrofuran ring The first fragment ion peak (3,4-methylenedioxybenzyl residue) represents the base peak, whilst in ring closed sesamin-type compounds the corresponding intensity ranges between 27 and 44% [1] The ¹³C NMR spectrum was obtained at 20 15 MHz in CDCl₃, the carbon shifts of 1 are listed in Table 1

Table 1 13C NMR data for (-)-dihydrosesamin*

1	134 2	1'	137 1
2	106 2	2′	108 0†
3	147 8	3′	145 9
4	147 8	4'	145 3
5	108 2†	5′	108 9†
6	1190	6′	121 3
7	82 8	7'	33 3
8	52 6	8′	42 3
9	60 8	9′	72 9
(3,4)-OCH ₂ O-	100 9	(3', 4')-OCH ₂ O-	100 8

*The δ values are in ppm downfield from TMS †Signals may be reversed

The structure of 1 derived from NMR and mass spectral data was confirmed by X-ray structure analysis (Figs 1 and 2) The tetrahydrofuran ring exists in envelope form with the hydrogens at C-7 and C-8 in the trans-position. The other benzodioxalane ring is over C-7' cis-connected to the tetrahydrofuran ring with respect to the CH₂OH groups The assignment of the absolute configuration could be made from the optical rotation This is the first time that (-)-dihydrosesamin has been isolated from a plant The other lignans, which have been found in the Thymelaeaceae belong to the bisepoxy-lignan series (pinoresinol and syringaresinol) or the monoepoxy-lignan series with an butanolid ring

Fig 1 (-)-Dihydrosesamin (1)

266 Z Lin-gen et al

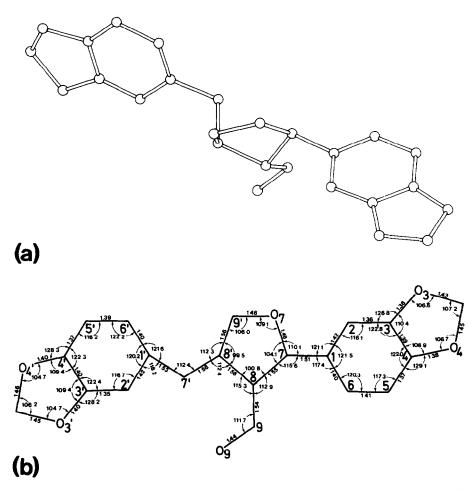


Fig 2 Crystal structure, bond distances and angles of (-)-dihydrosesamin The compound crystallized from methanol-chloroform in space group P2₁, a=9 841 Å, b=6 776 Å, c=13 459 Å, z=2 The intensities of 1344 independent reflexions were collected on a Nicolet-R 3m four circle diffractometer (Cu $K\alpha$, Ω scan, $2\delta \le 114^\circ$) The structure was solved by direct methods using ref [8] and refined (all H except the hydroxy group included) to a final R value of 7 4% for 1239 reflexions with I > 2 σ (I) *

(wikstromol, arctigenin, matairesinol) [2, 3] (-)-Dihydrosesamin is the first monoepoxy-lignan in the Thymelaeaceae with a 3-hydroxymethyl-2-phenyl-4-benzyl substituted tetrahydrofuran ring Lignans of the same type found in nature are lariciresinol [4], its glucoside [5], sanshodiol [6] and lariciresinol-4-methyl ether [7]

EXPERIMENTAL

Mps are uncorr TLC and prep TLC were carried out on Si gel F-254 (Merck) and CC on Si gel 60 (0 063 mm Merck No 7729)

Isolation of (-)-dihydrosesamin Air dried and powdered roots of Daphne tanqutica (700 g) (collected in June 1980 in Yunnan province P R China) were extracted with CH₂Cl₂ in a Soxhlet The CH₂Cl₂ extract was evapd to a syrup The residue (20 g) was applied to a Si gel column (7 cm, height 70 cm) and eluted with toluene-Me₂CO (75 27) The frac-

*The atomic coordinates are deposited at the Cambridge Crystallography Department, University of Cambridge, U K tionation was monitored by TLC The fraction containing a compound with $R_f = 0.47$ on TLC (toluene-Me₂CO (3 1) and H₂SO₄ reagent) was rechromatographed by CC with CHCl₃-Me₂CO (20 1) and then purified by prep TLC From MeOH, 0.05 g colourless crystals, mp = 98-99°, $[\alpha]_D^{25} = -15.9^{\circ}$ (pyridine, c 0.67), UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ) 235 (9187), 286 (9378), IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹ 3380, 2875, 2780, 1610, 1500, 1485, 1440, 1260, 1240, 1030, 919, 800, MS m/z 356 128 (M⁺, calc for C₂₀H₂₀O₆ 356 126), 356 [M]⁺ (50), 192 (14), 178 (14), 151 (26), 149 (29), 148 (18), 136 (23), 135 (100), ¹H NMR (CDCl₃) δ 1.77 (1H, s, OH), 2.18-2.53 (2H, m, H-8, H-8'), 2.72 (2H, m, H₂-7'), 3.64 (1H, m, H_e-9'), 3.72 (2H, m, CH₂OH), 3.98 (1H, m, H_e-9'), 4.78 (1H, d, J = 5.5 Hz, H-7), 5.90 (4H, s, -OCH₂O-×2), 6.67-6.82 (6H, arom H)

Acknowledgements—This investigation was supported by a grant from the Friedrich Ebert-Foundation awarded to Mr Zhuang Lin-gen and the DFG (Bonn) We thank Professor K Takahashi for an authentic sample of (+)-dihydrosesamin

REFERENCES

1 Takahashi, K, Hayashi, Y and Takani, M (1970) Chem Pharm Bull 18, 421

- 2 Tandon, S and Rastogi, R P (1976) Phytochemistry 15, 1789
- 3 Torrance, S J, Hoffmann, J J and Cole, J R (1979) J Pharm Sci. 68, 664
- 4 Haworth, R D and Kelly, W (1937) J Chem Soc 348
- 5 Satake, T, Murakami, T, Saiki, Y and Chen, C M (1978) Chem Pharm Bull 26, 1619
- 6 Abe, F, Yahara, S, Kubo, K, Nonaka, G, Okabe, H and Nishioka, I (1974) Chem Pharm Bull 22, 2650
- 7 Fonseca, S F, Nielsen, L T and Rúveda, E A (1979) Phytochemistry 18, 1703
- 8 Sheldrick, G M (1980) A Program for Crystal Structure Determination Shelxtl (Release 2.5) Cambridge-Gottingen